

Tetrahedron 56 (2000) 7923-7926

TETRAHEDRON

Dytesinins A and B, New Clerodane-type Diterpenes with a Cyclopropane Ring from the Tunicate *Cystodytes* sp.

Kazutaka Shimbo,^a Masashi Tsuda,^a Eri Fukushi,^b Jun Kawabata^b and Jun'ichi Kobayashi^{a,*}

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bGraduate School of Agriculture, Hokkaido University, Sapporo 060-0812, Japan

Received 21 July 2000; accepted 10 August 2000

Abstract—Two new clerodane-type diterpenes, dytesinins A (1) and B (2), with a cyclopropane ring have been isolated from the Okinawan marine tunicate *Cystodytes* sp., and the structures were elucidated on the basis of spectroscopic data including newly developed 2D NMR experiments such as CH-selected editing HSQC-NOESY and *J*-resolved HMBC. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

During our continuing search for unique secondary metabolites from marine tunicates,^{1–3} we have investigated extracts of the Okinawan tunicate *Cystodytes* sp., and isolated two new clerodane-type diterpenes, dytesinins A (1) and B (2), with a cyclopropane ring. CH-selected editing HSQC-NOESY, a new technique constructed by modification of editing HSQC (E-HSQC),^{4,5} and *J*-resolved HMBC recently developed by Furihata and Seto⁶ were applied for analysis of the relative stereochemistry. Here we describe the isolation and structure elucidation of 1 and 2.

Results and Discussion

The tunicate *Cystodytes* sp. collected off Ie Island, Okinawa, was extracted with MeOH, and the EtOAc-soluble materials of the MeOH extract were subjected to silica gel column chromatography and C₁₈ HPLC to afford dytesinins A (1, 0.00085%, wet weight) and B (2, 0.00019%) together with known compounds, iejimalides A (3), B, C and D^{7.8} and rigidin (4) (Chart 1).⁹

Dytesinin A (1) was shown to have the molecular formula, $C_{20}H_{30}O_3$, by HREIMS (*m*/*z* 318.2222 M⁺, Δ +2.7 mmu). IR absorptions at 3430 and 1740 cm⁻¹ were suggestive of the presence of hydroxy and carbonyl groups, respectively. The ¹³C NMR (Table 1) spectrum revealed carbon signals due to two sp² quaternary carbon, one sp² methine, one hemiacetal carbon, three sp³ quaternary carbons, two sp³ methines, eight sp³ methylenes, and three methyls. The ¹H NMR spectrum showed signals due to a doublet methyl ($\delta_{\rm H}$ 0.80, d, J=6.7 Hz), two singlet methyls ($\delta_{\rm H}$ 1.15 and 0.77), and two protons [$\delta_{\rm H}$ 0.47 (d, J=3.8 Hz) and 0.12 (d, J=3.8 Hz)] on a cyclopropane ring, although proton resonances at $\delta_{\rm H}$ 1.4–1.6 were severely overlapped.

Chart 1. Structures of dytesinins A (1) and B (2), iejimalide A (3), and rigidin (4).

0040-4020/00/\$ - see front matter $\textcircled{\sc 0}$ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(00)00711-0

Keywords: clerodane; diterpene; tunicate; 2D NMR.

^{*} Corresponding author. Tel./fax: +81-11-706-4985;

e-mail: jkobay@pharm.hokudai.ac.jp

Table 1. ¹H and ¹³C NMR data of dytesinins A (1) and B (2) in CDCl₃

Position	1			2		
	$\delta_{ m H}$		$\delta_{\rm C}$	$\delta_{ m H}$		δ_{C}
1	1.17	1.49	23.5 t	1.15	1.51	23.5 t
2	0.82	1.33	20.5 t	0.84	1.33	20.6 t
3	1.55	1.61	32.6 t	1.57	1.62	32.6 t
4			17.4 s			17.4 s
5			25.9 s			24.7 s
6	1.27	1.59	33.6 t	1.26	1.56	33.8 t
7	1.47^{a}		29.9 t	1.46 ^a		29.9 t
8	1.57		37.0 d	1.52		37.0 d
9			40.2 s			40.1 s
10	1.53		43.3 d	1.47		43.3 d
11	1.57 ^a		33.3 t	1.57 ^a		33.3 t
12	2.32	2.44	20.6 t	2.27	2.32	21.6 t
13			170.4 s			171.3 s
14	5.84		117.1 d			115.0 d
15			171.2 s			177.7 s
16	6.01		98.8 d	4.75 ^a		73.1 t
17	1.15 ^b		22.5 q	1.03 ^b		22.7 q
18	0.12	0.47	24.4 t	0.13	0.47	24.6 t
19	0.80^{b}		16.3 q	0.81 ^b		16.3 q
20	0.77 ^b		15.3 q	0.78 ^b		15.8 q

^a 2H.

^b 3H.

The gross structure of dytesinin A (1) was elucidated by extensive 2D NMR experiments including ¹H-¹H COSY, HSQC, CH₂-selected E-HSQC,^{4,5} CH₂-selected editing HSQC-TOCSY,^{4,5} and HMBC (Fig. 1). Detailed analyses of ¹H-¹H COSY, HSQC, CH₂-selected E-HSQC, CH₂-E-HSQC-TOCSY revealed selected four protonconnectivities from H₂-1 to H₂-3 and H-10, from H₂-6 to H₃-19, and from H₂-11 to H₂-12. The HMBC spectrum showed correlations for H₃-17/C-3, H₃-17/C-4, H₃-17/C-5, H₂-18/C-3, H₂-18/C-4, H₂-18/C-5, H₂-18/C-6, H₂-18/C-10, H₃-19/C-7, H₃-19/C-9, H₃-20/C-8, H₃-20/C-9, H₃-20/C-10, H₃-20/C-11, and H-1 β (δ _H 1.17)/C-10, suggesting connecitivities of the 6/6/3 tricyclic core. The presence of a γ -hydroxybutenolide ring was indicated by HMBC correlations for H-14 ($\delta_{\rm H}$ 5.84)/C-12 ($\delta_{\rm C}$ 20.6), H-14/C-13 ($\delta_{\rm C}$ 170.4), H-14/C-15 (δ_{C} 171.2), and H-16 (δ_{H} 6.01)/C-13. Thus the gross structure of dytesinin A was assigned as 1.

The relative stereochemistry of the tricyclic core was elucidated mainly on the basis of NOESY correlations (Fig. 2). NOESY correlations for H-6 α ($\delta_{\rm H}$ 1.27)/H₃-17 ($\delta_{\rm H}$ 1.15), H-6 α /H-18 β ($\delta_{\rm H}$ 0.12), and H-2 α /H-18 α ($\delta_{\rm H}$ 0.47) indicated that C-17 and C-18 were β -equatorially and α -axially oriented, respectively. The α -axial orientation for C-20 was

Figure 1. 2D NMR correlations for dytesinin A (1).

Figure 2. NOESY and CH-selected E-HSQC-NOESY correlations and relative stereochemistry of tricyclic core of dytesinin A (1).

deduced from the NOESY correlation for H-18 α /H₃-20. Any evidence of β -axial orientations for H-8 and H-10, however, could not be provided from the NOESY spectrum, since the methine proton signals were very close to each other, and other proton signals such as H-1B, H₂-3, H-6B, H₂-7, and H₂-11 were severely overlapped with those of H-8 and H-10. To separate H-8 and H-10 using well resolved carbon chemical shifts, we demonstrated the CH-selected E-HSQC-NOESY experiment (Fig. 3). Since 1 had only four methine carbons whose chemical shifts were relatively separated, reduction of the data points of the F_1 axis (t_1) increments, 16) and increase of the numbers of transients (scan numbers, 3k) can expect a sufficient signal-to-noise ratio. In the CH-selected E-HSQC-NOESY spectrum, correlations for C-10/H-8 and C-10/H-1ß were observed, thus indicating that H-8 and H-10 were both β -axially oriented. The chair form of the ring B was implied by analyses of ${}^{1}J_{CH}$ coupling constants obtained from J-resolved HMBC spectrum⁶ incorporating *J*-scaling pulse sequence¹⁰⁻¹² (n=30) (Fig. 4). The large coupling constants for H-6 α /C-10 and H-6 α /C-8 were determined to be both ${}^{1}J_{CH}$ 6.2 Hz based on the observed values (30× J_{CH} =186 Hz) in the J-resolved HMBC spectrum. Therefore, relationships between H-6 α and C-10 and between H-6 α and C-8 were suggested to be both antiperiplanar arrangements from the Newman projections of C-6-C-5 and C-6-C-7 bonds (Fig. 5).¹³ On the other hand, the rather smaller ${}^{1}J_{CH}$ value (3.1 Hz) for H-6 α /C-18 was obtained from the magnitude of the coupling constant (30× J_{CH} =93 Hz), indicating *gauche* relationship between H-6 α and C-18.¹³ The stereochemistry of C-16 remained unresolved, since epimerization of C-16

Figure 3. CH_2 -selected E-HSQC-NOESY spectrum (part) of dytesinin A (1).

Figure 4. J-resolved HMBC spectrum (part) of dytesinin A (1).

was observed. Thus the relative stereochemistry of dytesinin A (1) was concluded as shown in Fig. 2.

HREIMS data (*m*/*z* 302.2263 M⁺, +1.7 mmu) of dytesinin B (**2**) was revealed to possess the molecular formula, $C_{20}H_{30}O_2$, corresponding to those of the deoxy form of dytesinin A (**1**). Though the ¹H and ¹³C NMR data (Table 1) were close to those of **1**, differences were found for the butenolide moiety (C-13–C-16). Dytesinin A (**1**) possessed a hemiacetal group at C-16, while the ¹H and ¹³C NMR data of **2** showed signals due to an oxymethylene [δ_H 4.75 (2H, s), δ_C 73.1, t]. Therefore, the structure of dytesinin B (**2**) was elucidated to be the deoxy form at C-16 of dytesinin A (**1**).

Dytesinins A (1) and B (2) are new clerodane-type diterpenes with a cyclopropane ring at C-4–C-5, although isolation of diterpenes from marine tunicates is very rare.^{14–16} In this paper it was demonstrated that CH-selected E-HSQC-NOESY and *J*-resolved HMBC are very useful tools for stereochemical analysis. Although HSQC-NOESY experiment seems to be suitable to assign NOEs between two closely resonated protons, whose NOEs cannot be discriminated in the NOESY spectrum, the sensitivity of this method is very low. On the other hand, editing HSQC-NOESY affords a sufficient sensitivity within a reasonable measuring time, since selecting only methine or methylene carbons enables reduction of data points and increase of the numbers of transients.

Figure 5. Newman projections for (a) C-6–C-5 and (b) C-6–C-7 bonds in dytesinin A (1). ${}^{1}J_{CH}$ coupling constants are given in hertz.

Experimental

Extraction and isolation

The tunicate Cystodytes sp. (TN-514, 1.85 kg, wet weight) was collected off Ie Island, Okinawa, and kept frozen until used. The tunicate was extracted with MeOH (1 L×2), and the extract was partitioned between EtOAc (500 mL) and 1 M NaCl aq. Parts (490 mg) of the EtOAc-soluble materials (1.22 g) were subjected to silica gel column chromatography (CHCl₃→CHCl₃:MeOH, 98:2) to give two crude fractions containing the diterpenes. The fraction eluted with 2% CHCl₃/MeOH was purified by C_{18} HPLC (Mightysil RP-18, 5 mm, Kanto Chemical Co. Inc., 10×250 mm; eluent, CH₃CN/H₂O, 90:10; flow rate, 3.0 mL/min; UV detection at 220 nm) to afford dytesinin A (1, 0.00085%, wet weight, $t_{\rm R}$ 14.8 min). The fraction eluted with CHCl₃ was separated by C₁₈ HPLC (Mightysil RP-18, 5 mm, eluent, CH₃CN:H₂O, 80:20; flow rate, 3.0 mL/min; UV detection at 220 nm) to yield dytesinin B (0.00019%, t_R 38.4 min).

Dytesinin A (1). Colorless amorphous solid; $[\alpha]_D^{25} = \sim 0^\circ (c 1.0, \text{ CHCl}_3)$; IR (KBr) ν_{max} 3430, 2925, 1740 and 1630 cm⁻¹; ¹H and ¹³C NMR (see Table 1); EIMS *m/z* 95, 189 191, 300 (M-H₂O)⁺, and 318 (M⁺); HREIMS *m/z* 318.2222 [calcd for C₂₀H₃₀O₃, (M⁺): 318.2195].

Dytesinin B (2). Colorless amorphous solid; $[\alpha]_{D}^{25} = -37^{\circ} (c 0.25, \text{ CHCl}_3)$; IR (KBr) ν_{max} 2925 and 1715 cm⁻¹; ¹H and ¹³C NMR (see Table 1); EIMS m/z 95, 189, 191, 274 $(M-2CH_3)^+$, 287 $(M-CH_3)^+$, and 302 (M^+) ; HREIMS m/z 302.2263 [calcd for C₂₀H₃₀O₂, (M^+) : 302.2246].

NMR experiments

Dytesinin A (1, 5.5 mg) or B (2, 1.2 mg) was dissolved in 200 or 80 µL (for 500 or 600 MHz spectrometer) of 99.96% deuterium-labeled chloroform (CDCl₃). ¹H NMR, ¹H-¹H COSY, NOESY, HMQC, and HMBC spectra were measured at 300 K with a Bruker ARX-500 spectrometer equipped with 5 mm diameter H/X inverse probe. J-resolved HMBC spectrum was measured at 300 K with a Bruker AMX-500 spectrometer equipped with 5 mm diameter Z-gradient H/C/N inverse probe. ¹³C NMR, CH₂selected E-HSQC, CH2-selected E-HSQC-TOCSY, and CH-selected E-HSQC-NOESY spectra were recorded at 300 K on a Bruker AMX-600 spectrometer equipped with 2.5 mm Z-gradient C/H dual ($^{\hat{1}3}$ C NMR) or H/X inverse probe. 5 mm symmetrical thin-wall micro cells for CDCl₃ and 2.5 mm symmetrical micro cells for CDCl₃ (Shigemi Co. Ltd.) were used as NMR tubes for 500 and 600 MHz spectrometer, respectively.

CH₂-selected E-HSQC and CH₂-selected E-HSQC-TOCSY spectra were measured by the sequence described before.⁵ For CH₂-selection, the editing flip angle β and the delay τ were π and 3.7 ms (¹J_{CH}=135 Hz), respectively. The delays RD (repetition delay), BD (BIRD delay), and Δ were 2.0 s, 0.3 s, and 3.7 ms, respectively. A trim (2.5 ms) and an MLEV-17 composite pulses (mixing time; 60 ms) were used for measurement of the CH₂-selected E-HSQC-TOCSY spectrum. The F_1 and F_2 spectral widths were 5319 and 6024 Hz, respectively. The CH₂-selected E-HSQC spectrum was measured in 1k data points using 16 transients (with four dummy scans) for each $512t_1$ increments of F_1 spectral widths. On the other hand, the CH₂-selected E-HSQC-TOCSY spectrum was obtained in 1k data points using 64 transients (with four dummy scans) for each $216t_1$ increments of F_1 spectral widths. Zero-filling to 1k for F_1 and multiplication with squared cosine-bell windows shifted in both dimensions were performed prior to 2D Fourier transformation. Total measuring times for the E-HSQC and the E-HSQC-TOCSY spectra were ca. 3 and 12 h, respectively.

The CH-selected E-HSQC-NOESY experiments was carried out using the following pulse sequence; RD-BIRD[90°x(¹H) $-\Delta - 180^{\circ}_{v}(^{1}H, ^{13}C) - \Delta - 90^{\circ}_{-x}(^{1}H) - BD]$ $-90^{\circ}x(^{1}\text{H}) - \Delta/2 - 180^{\circ}x(^{1}\text{H},^{13}\text{C}) - \Delta/2 - 90^{\circ}\phi_{1}(^{1}\text{H}) - 90^{\circ}\phi_{2}$ (^{13}C) - editing $[\tau/2 - \beta_{0x}^{\circ}(^{14}H) - 180^{\circ}\phi_{3}(^{13}C) - \tau/2] - t_{1/2} - 180^{\circ}y_{3/2}$ $(^{1}\text{H}) - t_{1}/2 - 90^{\circ}_{x}(^{1}\text{H}, ^{13}\text{C}) - \Delta/2 - 180^{\circ}_{y}(^{1}\text{H}, ^{13}\text{C}) - \Delta/2 - 90^{\circ}_{x}$ $(^{1}\text{H}) - \tau_{\text{m}} - 90^{\circ}_{x}(^{1}\text{H}) - \text{AQ}_{\Phi4}(^{1}\text{H-decoupling}); \ \Phi = 2(y),$ $2(-y); \Phi 2=x, 2(-x), x; \Phi 3=4(x), 4(y), 4(-x), 4(-y);$ $\Phi 4=2(x, -x), 2(-x, x)$. For CH-selection, the editing flip angle β and the delay τ were $\pi/2$ and 7.2 ms $({}^{1}J_{CH}=139 \text{ Hz})$. The delays RD (repetition delay), BD (BIRD delay), Δ , and τ_m were 2.0 s, 0.3 s, 3.6 ms, and 0.8 s, respectively. The F_1 and F_2 spectral widths were 10638 and 6024 Hz, respectively. For each $16t_1$ increments, 3k transients (with eight dummy scans) were accumulated in 1k data points. Zero-filling to 64 for F_1 and multiplication with squared sine-bell windows shifted by $\pi/4$ and $\pi/8$ in the F_1 and F_2 dimensions, respectively, were performed prior to 2D Fourier transformation. The resulting data matrix was 0.5k×32. The total measuring time was ca. 48 h.

The *J*-resolved HMBC spectrum was measured using the sequence with ¹H-¹H decoupling reported by Furihata and Seto.⁶ The *J*-scaling factors *n* and *m* were set to 30 and 31, respectively. The delays nt_1 max and the constant time for long-range J_{CH} evaluation were 333 and 3.57 ms, respectively. The F_1 and F_2 spectral widths were 23809 and 4854 Hz, respectively. For each 256 t_1 increments, 512 transients (with two dummy scans) were accumulated in 1k data points. Zero-filling to 512 for F_1 and Lorenz-Gauss transformation (GB=0.3, LB –10) in F_2 and multiplication with squared cosine-bell windows in the F_1 dimensions were performed prior to 2D Fourier transformation. The resulting data matrix was 0.5k×512. The total measuring time was ca. 77 h.

Acknowledgements

We thank Mr Z. Nagahama for his help with collection of the tunicate and Dr T. Nishikawa, Nagoya University, for identification of the tunicate. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

- 1. Sato, H.; Tsuda, M.; Watanabe, K.; Kobayashi, J. *Tetrahedron* **1998**, *54*, 8687–8690.
- 2. Kobayashi, J.; Doi, Y.; Ishibashi, M. J. Org. Chem. 1994, 59, 255–257.
- 3. Doi, Y.; Ishibashi, M.; Kobayashi, J. Tetrahedron 1994, 50, 8651–8656.
- 4. Davis, D. G. J. Magn. Reson. 1991, 91, 665-672.
- 5. Fukushi, E.; Tanabe, S.; Watanabe, M.; Kawabata, J. Magn. Reson. Chem. **1998**, *36*, 741–746.
- 6. Furihata, K.; Seto, H. Tetrahedron Lett. 1999, 40, 6271-6275.
- 7. Kobayashi, J.; Cheng, J.-F.; Ohta, T.; Nakamura, H.; Nozoe, S.; Hirata, Y.; Ohizumi, Y.; Sasaki, T. *J. Org. Chem.* **1988**, *53*, 6147–6150.
- 8. Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. *Tetrahedron Lett.* **1991**, *32*, 797–798.
- 9. Kobayashi, J.; Cheng, J.-F.; Kikuchi, Y.; Ishibashi, M.; Yamamura, S.; Ohizumi, Y.; Ohta, T.; Nozoe, S. *Tetrahedron Lett.* **1990**, *31*, 4617–4620.
- 10. Hosur, R. V.; Kumar, M. R.; Sheth, A. J. Magn. Reson. 1985, 65, 375–381.
- 11. Krishnamurthy, V. V. J. Magn. Reson. 1996, B113, 45-52.
- 12. Krishnamurthy, V. V. J. Magn. Reson. 1996, A121, 33-41.
- 13. Kalinnowski, H.-O.; Berger, S.; Braun, S. In *Carbon-13 NMR Spectroscopy*, Wiley: Chichester, 1988 (528pp).
- 14. Malochet-Grivois, C.; Cotelle, P.; Biard, J. F.; Hénichart, J. P.; Debitus, C.; Roussakis, C.; Verbist, J. F. *Tetrahedron Lett.* **1991**, *32*, 6701–6702.
- 15. Toupet, L.; Biard, J. F.; Verbist, J. F. J. Nat. Prod. 1996, 59, 1203–1204.
- 16. Biard, J. F.; Malochet-Grivois, C.; Roussakis, C.; Cotelle, P.; Hénichart, J. P.; Debitus, C.; Verbist, J. F. *Nat. Prod. Lett.* **1994**, *4*, 43–50.